Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
http://www.lintcode.com/en/problem/triangle/
Discussion
很简单的动归。用f[i][j]表示triang[i][j]到bottom的最短路径长度,那么状态转移方程为:f[i][j] = min(f[i+1][j], f[i+1][j+1]) + triangle[i][j]
实现的时候需要申请O(n^2) space。
可以优化为O(n) space 一维数组,将状态转移方程转化为:f[j] = min(f[j], f[j+1]) + triangle[i][j]
要熟练写出用一维数组的实现。和分治+hash的实现
Solution
二维数组实现。
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
// write your code here
int n = triangle.size();
if(n == 0) return 0;
vector<vector<int> > state(n, vector<int>(n, 0));
for(int i=n-1; i>=0; i--) {
state[n-1][i] = triangle[n-1][i];
}
for(int i = n-2; i>=0; i--) {
for(int j=0; j<=i; j++) {
state[i][j] = min(state[i+1][j], state[i+1][j+1]) + triangle[i][j];
}
}
return state[0][0];
}
};
一维数组实现
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
// write your code here
int n = triangle.size();
if(n == 0) return 0;
vector<int> f = triangle[n-1];
for(int i=n-2; i>=0; i--) {
for(int j = 0; j<=i; j++) {
f[j] = min(f[j],f[j+1]) + triangle[i][j];
}
}
return f[0];
}
};
如果用triangle本身替代表示状态的二维数组,则降为O(1) space
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
// write your code here
int n = triangle.size();
if(n == 0) return 0;
for(int i = n-2; i>=0; i--) {
for(int j=0; j<=i; j++) {
triangle[i][j] = min(triangle[i+1][j], triangle[i+1][j+1]) + triangle[i][j];
}
}
return triangle[0][0];
}
};
无论哪个方法,自底向上的思路是一致的。在递归中这种思路非常非常普遍。
递归实现。分治的思想。time limited, O(2^n) run time. O(1) space.
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
// write your code here
int n = triangle.size();
if(n == 0) return 0;
return helper(0,0,triangle);
}
int helper(int i, int j, vector<vector<int> > &triangle) {
int n = triangle.size();
if(i == n) {
return 0;
}
int case1 = helper(i+1, j, triangle) + triangle[i][j];
int case2 = helper(i+1, j+1, triangle) + triangle[i][j];
return min(case1, case2);
}
};
divide and conquer plus hash map to reduce duplicated computation. O(n^2) runtime, O(n^2) space.
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
// write your code here
int n = triangle.size();
if(n == 0) return 0;
vector<vector<int> > hash (n, vector<int>(n, INT_MIN));
return helper(0,0,triangle, hash);
}
int helper(int i, int j, vector<vector<int> > &triangle, vector<vector<int> > &hash) {
int n = triangle.size();
if(i == n) {
return 0;
}
if(hash[i][j] != INT_MIN)//已经计算过了就不用再计算了
return hash[i][j];
int case1 = helper(i+1, j, triangle, hash) + triangle[i][j];
int case2 = helper(i+1, j+1, triangle, hash) + triangle[i][j];
hash[i][j] = min(case1, case2);
return min(case1, case2);
}
};
DFS。会超时。想象成有向图里面找root到最底层节点的所有路径。visited数组这里不能用来去重,因为是自顶向下,节点就是有可能重复访问。
class Solution {
public:
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
int minimumTotal(vector<vector<int> > &triangle) {
if(triangle.empty()) return 0;
int n = triangle.size();
vector<vector<int> > visited(n, vector<int>(n, false));
int result = INT_MAX;
int path;
dfs(triangle, 0, 0, visited, path, result);
return result;
}
void dfs(vector<vector<int> > &triangle, int i, int j, vector<vector<int> > &visited, int path, int &minPath) {
if(i == triangle.size()) {
if(path < minPath) {
minPath = path;
}
return;
};
//if(visited[i][j] == true) return;
visited[i][j] = true;
//if(i+1 == triangle.size() || visited[i+1][j] == false)
dfs(triangle, i+1, j, visited, path + triangle[i][j], minPath);
//if(i+1 == triangle.size() || visited[i+1][j+1] == false)
dfs(triangle, i+1, j+1, visited, path + triangle[i][j], minPath);
}
};