Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
http://www.lintcode.com/en/problem/unique-paths-ii/
Discussion
多了一个条件,一个位置上若是obstacle,path number is 0. 这么简单还是没有bug free。见code comment。
Solution
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
// write your code here
int m = obstacleGrid.size();
if(m==0) return 0;
int n = obstacleGrid[0].size();
vector<int> f(n, 1);
if(n ==0) return 0;
if(obstacleGrid[0][0] == 1) return 0;
for(int i=1; i<n; i++) {
f[i] = obstacleGrid[0][i]==1 ? 0: f[i-1];
}
for(int i = 1; i<m; i++) {
for (int j=0; j<n; j++) {
if(j ==0) {//刚开始没有考虑到第一列有可能有obstacle。
f[j] = obstacleGrid[i][j]==1 ? 0: f[j];//not f[j-1]
} else
f[j] = obstacleGrid[i][j]==1 ? 0: f[j-1]+f[j];
}
}
return f[n-1];
}
};
recursion
class Solution {
public:
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
// write your code here
int m = obstacleGrid.size();
if(m == 0) return 0;
int n = obstacleGrid[0].size();
if(n == 0) return 0;
if(obstacleGrid[0][0]==1) return 0;
return helper(obstacleGrid, m-1, n-1);
}
int helper(vector<vector<int> > &A, int i, int j) {
if(i==0 && j==0) {
return A[i][j]==1 ? 0 : 1;
}
if(j==0) {
return A[i][j]==1 ? 0: helper(A, i-1, j);
}
if(i==0) {
return A[i][j]==1 ? 0 : helper(A, i, j-1);
}
if(A[i][j]==1) return 0;
return helper(A, i-1, j) + helper(A, i, j-1);
}
};