LRU Cache
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
http://www.lintcode.com/en/problem/lru-cache/#
Discussion
为了使查找、插入和删除都有较高的性能,我们使用一个双向链表(std::list) 和一个哈希表
(std::unordered_map),因为:
• 哈希表保存每个节点的地址,可以基本保证在O(1) 时间内查找节点
• 双向链表插入和删除效率高,单向链表插入和删除时,还要查找节点的前驱节点
具体实现细节:
• 越靠近链表头部,表示节点上次访问距离现在时间最短,尾部的节点表示最近访问最少
• 访问节点时,如果节点存在,把该节点交换到链表头部,同时更新hash 表中该节点的地址
• 插入节点时,如果cache 的size 达到了上限capacity,则删除尾部节点,同时要在hash 表中删
除对应的项;新节点插入链表头部
Solution
#include <list>
class LRUCache{
public:
struct ListNode {
int value;
int key;
ListNode(int k, int v) {
value = v;
key = k;
}
};
// @param capacity, an integer
LRUCache(int capacity) {
this->capacity = capacity;
}
// @return an integer
int get(int key) {
if(map.find(key) == map.end()) {
return -1;
}
//before return the value, update the head of the nodes list
//and update the position of shis node
nodes.splice(nodes.begin(), nodes, map[key]);
map[key] = nodes.begin();
return map[key]->value;
}
// @param key, an integer
// @param value, an integer
// @return nothing
void set(int key, int value) {
if(map.find(key) == map.end()) { //new node
if(nodes.size() == capacity) {
map.erase(nodes.back().key);
nodes.pop_back();
}
nodes.emplace_front(ListNode(key, value));
map[key] = nodes.begin();
} else {
map[key]->value = value;
nodes.splice(nodes.begin(), nodes, map[key]);
map[key] = nodes.begin();
}
}
private:
int capacity;
list<ListNode> nodes;
unordered_map<int, list<ListNode>::iterator> map;
};
splice函数太不常用了,可以用erase+emplace_front替代:
//nodes.splice(nodes.begin(), nodes, map[key]);
nodes.erase(map[key]);
nodes.emplace_front(ListNode(key, value));